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We consider the rapid rotation, in the sense of large Reynolds number e-l, of a 
gravitating solid sphere in a monatomic gas. The flow is characterized by a thin 
boundary layer on the sphere and a thin, swirling, buoyant, radial jet in the 
equatorial plane. When the Prandtl number g is of order unity, the boundary 
layer and jet are to first order uncoupled from the outer flow. For sufficiently 
small Prandtl number (which may be interpreted as approximating an optically 
thick radiating gas), the outer flow i s  boundary-layer driven. The parameter 
boundary between these two dissimilar steady states is g = O(e4). 

1. Introduction 
We consider here the rapid rotation of a massive and hence gravitating solid 

sphere in a monatomic gas otherwise a t  rest. Rapid rotation here means large 
Reynolds number Qa2/vo = 6-1, where Q is the angular velocity of the sphere, 
a its radius and vo is the kinematic viscosity a t  the surface. The structure of the 
flow is shown schematically in figure 1. Adjacent to the spherical surface, denoted 
henceforth by 9, is a thin viscous boundary layer of width (vo/Q)t;  the fluid 
entrained by this boundary layer erupts from 9 in a thin swirling radial jet in 
the equatorial plane, denoted by &, which has initial width ( vo /Q) i  as well. 

These basic features of the flow are those of a rotating sphere in an incompres- 
sible fluid also. Howarth (1951) f i s t  wrote down the appropriate boundary-layer 
equations and gave a power-series solution. Squire (1955) discussed the structure 
of such a radial jet in another context, though swirl was not included. Stewartson 
(1958) noted the proper way in which to join the boundary-layer solution to the 
jet a t  the intersection of 9' and &. There has been some conjecture that the 
boundary layer developing from the pole separates either before or just a t  
6' = &n (Nigam 1954; Singh 1970), but Stewartson (1958) and Foster (1972) have 
presented arguments that the boundary layer is attached on the interval 
0 < 6' 6 in. The numerical solutions of Fox (1964), Banks (1965) and Manohar 
(1967) all support this latter view; in fact, if the boundary layer developing from 
one pole is somehow removed, Fox's results predict a point of zero skin friction 
a t  about 100". 

The jet on & presents certain difficulties which may be understood as follows. 
The fluid is entrained by the boundary layer a t  a temperature which is the fluid 
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FIGURE 1. Schematic representation of the flow induced by the rapid 
rotation of a massive sphere in a gas. 

temperature a t  the boundary-layer edge. Once in the boundary layer, the fluid 
is transported towards & and during that process is heated by viscous dissipation 
and either gains or loses heat to the solid surface (unless the surface is insulated). 
When the boundary-layer material finally arrives at  &, it is either colder or 
hotter than the fluid just outside the boundary layer. If it  is hotter, buoyancy 
forces accelerate the jet; if it is colder, the retarding effects of this cold fluid 
moving through warm surroundings might possibly terminate the jet. Should 
the jet terminate a t  a finite distance from the sphere, the general model of the 
flow presented herein would be breakdown. I n  Q 6, the condition for jet penetration 
to infinity is given. 

Except in the regions of large gradients near Y and & discussed above, the 
flow is inviscid, but the structure is quite different when the Prandtl number is 
of order unity from the structure given in Foster (1970, hereafter referred to as I), 
for the small-Prandtl-number flow. I n  fact, the critical parameter is found, in 
$ 7 ,  to  be g/d. If CT = o(s*), the outer flow is boundary-layer driven and the 
velocities are O(fiue4); the streamlines, from I, are shown in figure 2(a) .  If 

> O(si), 3 5 shows the streamlines to have the general form given in figure 2 (b).  
Velocities in that range a.re much larger, O(fia(s/g)*), and are associated with 
the free convection of the fluid. The somewhat surprising thing here is that the 
matching (see $ 4) indicates that this convective motion is uncoupled to the jet 
and the boundary layer, to first order !t 

2. Formulation and outer expansion 
The equations of motion for the problem set in Q 1 are given below in non- 

dimensional form for convenience. All thermodynamic quantities are based on 
their values on the surface Y ;  this is the simplest procedure though the pressure 

t It should be noted that, if the sphere is non-rotating, the free convection velocities 
along the surface must be brought to  zero through the action of viscosity. In  that case, 
the boundary layer has width ( a 2 v o r ~ / c , ) * ,  cc I$, where co is the isothermal sound speed. 
The rotation, then, thins the layer from a width a v$ to a width a vt. 
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((1) (b) 

FIGURE 2. Meridional plane outer flow. (a)  u = o(E*).  ( b )  O(s*) < u < O(1).  

at, infinity is the real pressure scale. Basing velocities on the equatorial speed Qu, 
we have then (Lagerstrom 1964) 

v.  (pu)  = 0, (2 .14  

( 2 . 1 4  

P = PT, (2 .14  

B2p(u. V )  u + V p  = pV(a/r)  + eB2V. T, (2 . lb)  

PU. V T  - EU . V p  = (&/(T) V.  ( T w V T )  + +&B2@*, 

T = T"(e - $10. u), (2.1e) 

where e is the deformation tensor, 4 < w < 1 for a monatomic gas (Chapman & 
Cowling 1952, p. 220) and is the viscous dissipation. We use spherical polar 
co-ordinates (r,  O , $ )  throughout; the velocity components are (u, v ,  w) respec- 
tively. The four parameters that occur are 

E = Vo/!&J2, (T = Yo/Ko, B = QU/Co, 01. = Ugo/C& 

where vo, K ~ ,  co and go are respectively the kinematic viscosity, thermometric 
conductivity, isothermal sound speed and gravitational acceleration on the 
surface 9. 

Equations (2.1) are to be solved, then, subject to the boundary conditions 

u = k x r ,  p = l  

T = l  or r . V T = O  
( 2 . 2 4  

where k = Q/Q, and 

u + 0, T -+ T,, p N static atmosphere as r -+ CO. (2.2b) 

In  this paper, we seek the uniformly valid asymptotic solution for E L 0 with B 
and a of order unity; the order of magnitude of (r presents something more of 
a problem. In I, solutions for E 4 0 were constructed for (T = o ( d ) . t  Here, we 
cover the previously unsolved range, O( 1)  2 (T > O ( E ~ ) .  

number associated with radiation heat transfer in an optically thick gas. 
t In I, i t  is pointed out that u = o(1) may be interpreted physically as a Prandtl 
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Since motion occursabout a spinning sphere only because the fluid has viscosity, 
it  appears that IuI = o(1) in B away from any thin viscous layers. So, to leading 
order, the outer solution is hydrostatic, i.e. 

VPl = PlV(a/r). (2.3) 

The additional information needed to compute p1 = pl(r) comes from the 
energy transport characteristics in the fluid, i.e. the limit of ( 2 . 1 ~ )  as E J O .  
That is not trivial to determine since the order of magnitude of Iul must be 
known. Provided that the order of IuI is greater than e / r ,  which must be checked 
a posteriori, ( 2 .  I c )  yields 

(2.4) 

So long as the outer flow streamlines originate a t  infinity, which is proved in 
$5, solution of ( 2 . 1 4 ,  (2 .3 )  and (2.4) gives 

~ 1 ~ 1 .  VTl - S U ~ .  Vp1 = 0. 

Tl = T m ( 1  + P I T ) ,  PI = Pm(l +P/+, (2.5) 

where P = 2a/5Tm. This solution corresponds to what is generally referred to as 
an ‘adiabatic atmosphere’. 

The velocity scale of the outer flow presents some difficulty. As will be shown 
in $3 ,  the boundary-layer entrainment is of order s t ;  the assumption that the 
outer flow has this scale, an assumption used in I throughout, leads to a unique 
uniformly valid solution only if CT = o ( E ~ ) .  So long as CL is O ( l ) ,  there are strong 
convective forces which drive a motion with velocity magnitude (E/u)+ 9 €3. 
Hence, we now write the outer expansion as 

I u = (€/d2)+ u1 + E h l ,  + , . . , 
p = p l + ( ~ B / ~ ) * p , +  .... 

Substitution into (2 .1 )  does indeed produce (2 .3 )  and (2 .4 )  to first order, and to 
next order, 

v * (PlU1) = 0,  ( 2 . 7 ~ )  

Pl(U1 . V )  U l  + VP2 = pzV(a/r), (2 .7b)  

plUl. VH = (W + 1)-l V2TYf1, ( 2 . 7 ~ )  

P, = PZTl+P,T2, H = Tz++lu,12. (2 .7d ,  e )  

We note that the azimuthal component of (2 .7b )  is 

plul. V(rwl sin 6’) = 0, 

which has the solution w1 = 0. We note further that the velocity scale 

QZa(€/CTB2)+ = (voc;/aa)+, 

which is &2 independent as it must be since, as we shall show in 5 4, this motion is 
uncoupled to the rotation of the sphere and will occur whether or not the sphere 
rotates. 

We postpone further discussion of (2 .7)  until $5, since boundary conditions 
must be carefully deduced by matching with the boundary layer on Y described 
in the next section. 
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It should be noted that the series (2.6) is indeed asymptotic to the solution as 
E 1 0 only if a is of sufficient size, i.e. u, = u,( r; a), and, from (5.3), we note that 
lull cc a as a 1  0. Therefore, if (2.6) is to be an asymptotic series, we require 

a 9 ddB-3. 

However, if a is too large, pressure gradients normal to the sphere will invalidate 
the analysis of $3 .  Hence, we also require that a < c--4. 

3. The boundary layer; 
Since the velocity in the outer flow is o(1) and the boundary condition ( 2 . 2 ~ ~ )  

involves velocities O( l) ,  there must be a viscous boundary layer on 9'. If B = O( l),  
the layer is compressible and has width €4; y = ( r -  l)/d is the boundary-layer 
co-ordinate. Under a Howarth-Dorodnitsyn transformation (see Stewartson 
1964, p. 29), 

= O(1) 

the boundary-layer equations become 

sin 06; + (8 sin e), = 0, (3.2a) 

L8-82cot8 = ( 9 w - % 7 ) 7 ,  (3 .2b)  

L(& sin e) = (?@-laq sin o)?, ( 3 . 2 ~ )  

LP = V - ~ ( ! F W - ~ P ~ ) ~  + $BzPW-l(8," + a,"), (3 .2d )  

L = a* a p q  + aa/ae, (3.2e) 

where the caret refers to a boundary-layer variable. The boundary conditions 
(2.2a) are here 

a* = 8 = 0, 8 =sine;  f'= 1 or T7 = 0 on q = 0, (3.3) 

and matching with (2.5) and (2.6) obviously requires of the leading-order solu- 
tions of (3.2) that 

A 

6,8-+0,  9 - ~ ~ ( 1 + p )  as 7 - t ~  (3.4) 

An immediate consequence of (3.4) is 

y - Tm(l+P)7 as T ' W ,  

so that the layer thickness is not €4 but rather d( 1 +p)  T,. We note that in the 
special case w = 1, a 'hard sphere gas' (Chapman & Cowling 1952, p. 30), 
equations (3.2) are decoupled and the velocity components are those for the in- 
compressible boundary layer in the q, 0 plane. There are quite accurate numerical 
solutions in the literature (Banks 1965; Manohar 1967) for the incompressible 
problem, and these may be used to integrate the energy equation numerically. 
Once P has been found, the transformation may be inverted to find the solutions 
as functions of (y, 8). 
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FIGURE 3. Compressibility co-ordinate correction for an insulated sphere 

at various values of the polar angle 8 ;  w = 1. 

It may easily be shown by writing down a total temperature equation from 
(3.2) that, provided CT = I, 

p = T'(1 +p)  ++B2(P +a2) +fB28sin8 

is the temperature solution for the case when the sphere is thermally insulated 
( p q  = 0 on 7 = 0 ) ;  note that the surface temperature has a sin2@ distribution. 
Using the results of Manohar (1967), @ was computed, then the integral in 
(3.1) was calculated numerically and hence, provided w = 1 as well, 

y = T,( 1 +B) 7 + QB2P(7, O), 

where 3' is shown in figure 3 as a function of 7 for various values of 8. 
The boundary layers developing from each pole of the sphere collide at 0 = in 

and form a flat swirling radial jet on € (Stewartson 1958; Foster 1972). All 
along their length the boundary layers entrain fluid, viz. 

U -  -dT,(I+p)E,(8) as y-too. (3.5) 
Note that E,(8) = E(0) ,  which is the entrainment rate for the incompressible 
boundary layer (tabulated in Manohar 1967); further, for o $: 1, EJ8)  will also 
depend explicitly on B2. 

4. The matching; (r = O(1) 
Before giving details of the structure of the free convection, it is necessary to 

study the character of the matching of the inner (boundary-layer) expansion 
and the outer expansion for cr = O( 1). 

Recall from (2.6) that the outer expansion proceeds 

u = yIu1+yzuz+ ..., (4.1) 
where we have written, for convenience, y1 for (e/aB2)* and yz for E*. The boun- 
dary-layer expansion is 

(4.2) 
u = yzal+ ..., 

(v,w) = (al,al)+p(a,,a,)+ ..., 
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where a caret again denotes a function of (y, 0) and (al, 8,, O1) is the leading- 
order boundary-layer solution discussed in Q 3. ,u = o( l), but is otherwise as yet 
undetermined. 

Because the matching must be done with some care, we use the ‘intermediate 
limit’ (Cole 1968, p. 17);  let y6 = ( r -  l)/S, where S is such that O(&) < S = o(i) .  
If we denote by ‘lim’ the limit 6, (E&/B) -1 0 with y6 fixed, then 

lim{(y2~1-y1~,)/y,} = --%(1,0) = 0, 

so that the boundary condition for (2.7) is u1 = 0 on 9’. Clearly, (3.4) already 
involves some anticipation of the matching principles since 

lim(Ol-ylvl) = lim(8,-y1wl) = 0. 

Therefore, the expansions match to first order if 

u1 = 0 on 9’. (4.3) 

We note also that the radial jet on € entrains fluid at  the same rate as the boundary 
layer, so that a similar matching procedure applied on & will yield 

w1 = 0 on €. (4.4) 

A second application of the limit to the radial velocity u gives 

lim[(ylul+y2u2+ ... - Y ~ ~ ~ ) / Y ~ I  = u 2 ( l , 0 ) - % ( ~ , 0 )  

(wl( 1,0) sin@, (4.5) SYl 1 a 
y2 sin 19 80 

and so long as 6 = o(e*), which still allows overlap, 

u2 = Q1(m, 0) = - E,,,T‘( 1 +,8) on 9’. (4.6) 

A second limit applied to v and w yields matching conditions for higher-order 
boundary-layer solutions; if ,u = yl ,  then 

a2(al, 0) = vl( 1, 0), &,(a, 0) = wl( I )  0). (4.7) 

There will also be a boundary condition on the u2 flow on 6, much like (4.6). 

5. The structure of the free convection 

conditions 
From 8 4, the free convection equations (2.7) are to be solved with the boundary 

r.ul = 0 on 9, k . u l =  0 on &, lull + O  as r - f c o .  (5.1) 

Solutions have not as yet been obtained to this boundary-value problem. We 
give below some properties of the solution. 

The streamline pattern 

We shall prove that there are no closed streamlines in this flow and that, 
hence, the streamline pattern must be generally of the form shown in figure 2 (b ) ;  
the proof is by contradiction 
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Since u, = u,(r,8), it is sufficient to consider a streamline in the r ,  8 plane, 
say C,, that encloses a finite region R. Equation ( 2 . 7 ~ )  is 

V . (plulH) = [2a/5r2l2 TY-’ 

and integration over R with use of Gauss’s theorem (Jeffreys & Jefieys 1956, 
p. 211) gives 

plH(ul. n) dl = [2a/5r2I2 wT;-ldr.  
/ C ,  / R  

The integrand on the left is zero by definition of C, even if certain portions of C, 
consist of segments of Y and 8, since, by (5. l ) ,  Y and d are also streamlines of 
the u1 flow; therefore, provided that ma2 f 0, we have 

j R T g  a7 = 0, (5 .2)  

which is impossible since the integral is positive definite. Thus there is a con- 
tradition and the original assumption is violated. There can be no closed stream- 
lines in the first-order outer flow. 

Asymptotic solution as r + co 

Note that, since Tl = T,(1+ O(a/r ) ) ,  Tl N T, for a L 0 and all r 2 1 or for a 
arbitrary and r sufficiently large. In  that eventuality, we write 

(5.3) 
u1 = -ac$;/rzsinO, v1 = ac$:/rsin8, 

T, = ac2T,T*, c (4~T$-~/25p, )* ,  

and then (2.7) reduce to 

In  particular, these equations admit the asymptotic solutions 

$* N g(6) r*, T* N f (8) r-5 as r -+ 00. 

The functions f and g satisfy the ordinary differential equations 

2gf + 5fg’ = 3 sin 8, 3f’ + 2gQ’ + 7Qg‘ = 0, (5.5) 

where Q(0) is the angular variation of the vorticity o* and is given by 

Q(6) = [g” - g’ cot 6 - ~g]/sin2 8. 

The boundary conditions are 

g(0) = g’(0) = g($7r) = 0. 

The consequence of the results here is that all streamlines of the u, flow must 
originate at  infinity, where TI = T,, thus proving the validity of (2.5). (If closed 
streamlines could exist, (2.5) could not be correct for all r < co.) 
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6. The equatorial jet 
The fluid entrained by the viscous boundary layer on Y ,  discussed in $3 ,  

erupts at  8 = &7r into a thin swirling radial jet concentrated near d. For = O( i),  
buoyancy forces are significant to the dynamics of the jet, and a self-similar 
solution is in general impossible. In  fact, very large negative buoyancy will 
cause the jet to terminate at  a finite distance r = rd from the sphere. 

If the Howarth-Dorodnitsyn transformation is made the jet equations are 

i a  i av+ 
r2 ar r 84 
--(rZu)+-- = 0, 

w2 a 
r B2Tl r2 

SU--+- (TI-T) = 0, 

( 6 . 1 ~ )  

(6 . ib)  

_Ep(rw) = 0, ( 6 . 1 ~ )  

( 6 . l d )  

where v+ is a transformed 0 velocity, %is the total temperature T + iBZ(u2 + w2), 

The physical-plane boundary-layer variable B is 

(6 . le )  

The third term in (6.1 b )  is the buoyancy term, which is critical to the question 
of jet penetration to infinity. 

For the case c = 0(1), it is proved in appendix A that a sufficient condition 
for such penetration of the jet through the ‘adiabatic’ atmosphere to infinity is 

Stewartson (1958) gave arguments for the way in which incompressible 
boundary layers on Y developing from the poles collide at  8 = &T, and turn to 
form the radial jet on 8. This turning, as he noted, occurs in a thin annulus of 
radius 1 and cross-section €4 x €4. If the boundary layers are compressible, then 
the total temperature, entropy and angular momentum are invariant along 
streamlines through the turn. That being the case, (6.3) may be recast in a form 
that relates to the boundary-layer structure rather than to that of the jet, viz. 

The boundary-layer equations (3.2) may be integrated to yield 

(6.4) 

an alternative 

(6.5) 
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The insulated sphere satisfies this requirement, provided that a and 8 are one- 
signed throughout. 

If w = 1, the first integral in (6.5) may be done numerically from the data given 
in Manohar (1967), with the result that (6.5) takes the form 

From either (6.5) or (6.6), it  is clear that, if the sphere is sufficiently cold, then 
A 

T,(,,, will be sufficiently positive to violate this condition. 

7. The solution structure for c = o(1) 

As previously mentioned, a unique solution is given in I for the parameter 
range c = o ( d )  in which U ,  = 0 andp, = T, = p2 = 0, i.e. with no free convection. 
We explore here the reason for the disappearance of this convective motion as 

When c = o( I), the equatorial jet cannot possibly terminate but exists intact 
to infinity; the self-similar structure of such a jet is given in 9 4 of I. There are 
no buoyancy forces in the small-Prandtl-number jet because the relatively large 
heat conductivity allows the jet material to adjust to the local temperature of 
the fluid a t  the jet edge at  every radial station. 

The c = o( 1) boundary-layer structure is essentially in two parts. The velocity 
boundary layer is incompressible, with width d, as in 8 3, and it lies beneath, 
provided that (T > O ( E ~ ) ,  a thicker thermal layer of thickness d/r. It is shown in 
appendix B that if c > O ( d )  the thermal layer has a relatively simple structure 

O J O .  

described by 

where y1 is the thermal-layer co-ordinate ( r  - i)/(.d/c). The solution of this equa- 
tion, as given in 3 6 of I, is T = l if the sphere is insulated and 

i f T  = 1 o n r  = 1.  

expansion with the boundary layers requires that 
For O($) < c = o(ea), appendix B also shows that the matching of the outer 

[v1(1,0)sin8] = 0, 
d l d  
do sin 8 d8 
--- 

which can be true only if u1 = v1 = p2 = T2 = p2 = 0, SO the free convection dis- 
appears in that range of c. 

Thus, for O ( d )  < c = o(1) the convection exists and the flow is much like 
the c = O(1) flow described in $92-6; for O ( d )  < c = o(d) ,  no convection can 
exist and the leading-order velocity scale is €3. The details of the solution for 
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this case may be found in I .  (In I unique solutions are given for all CT = o(&), as 
mentioned above. The solutions were constructed there without consideration 
of any freely convecting flow; it was found, however, that solutions that tacitly 
fail to include free convection break down at  a value of r~ of €4.) 

The author would like to thank Professor 0. R. Burggraf for his reading of 
the manuscript, and his several helpful comments in regard to its revision. 

Appendix A 

integrated to give 
We consider the buoyant jet described by (6.1). In  particular, ( 6 . l b )  may be 

where 

the momentum flux. We note that the first term on the right side of the equation 
is the centrifugal force, which accelerates the jet towards infinity; the second 
term is the buoyancy force, which may be accelerative or decelerative, depending 
upon its sign. The quantity I is positive definite; should (A 1)  indicate a simple 
zero of I ,  the jet would fail to exist at  that point. A necessary condition for such 
a simple zero of I at, say, r = r* is, noting that I’ must be negative there, 

Now consider a function f ( r ,  $) that satisfies 2’f = 0 in D :  r > 1, 141 < a. If 
f (  1, $) 2 0, the maximum principle for such a parabolic equation (see Friedman 
1964, chap. 2) states that f 2 0 in D .  

For r~ = 1, % satisfies 9% = 0 in D ,  so clearly, if % - Tl 2 0 on r = 1, then 
- Tl > 0 in D; equation (A 2 )  then indicates that, if - Tl 2 0 on r = 1, I has 

no zero, so that the jet exists intact to infinity. Conversely, if % - Tl is negative 
on r = 1, equation (A 2 )  indicates the possibility that the jet will terminate. 

By forming a kinetic energy equation from ( 6 . l b )  and (6.lc), one can easily 
show that the negative-definite dissipation term gives the bound 

P m  

where E = J rzu(Qu2 + i w 2 )  dq5, 
-a 

from which we note that the jet will terminate or reverse if 
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In  addition, we further shall show below that a self-similar solution of (6 .1 )  
- TI E 0. All of the above then demonstrates that is possible for 

is a sufficient condition for existence of the jet to r = co. 

Similarity solution 

Equations (6.1) may be put in an especially useful form for a 'model fluid' 
(Stewartson 1964, p. 37) ,  i.e. (T = w = 1, 

where $ is a stream function, u = $$/r2, v = -$Jr,  and A in (A 6) represents 
either %-TI or W = rw. For the case p 3 0, these equations are exactly those 
solved in Q 4 of I, and correspond to the jet structure when (T = o( l), where there 
are no buoyancy effects. 

Since both W and % - T satisfy the same equation and they both vanish for 
# -f 00, we write 

and look €or solutions of the form 

T,-T, = cW,  c = constant, (A 7) 

$- = A(r )  F ( 0 ,  w = W )  G('5), '5 = $vw. (A 8) 
Substitution of (A 8) into (A 5 )  and (A 6 )  yields two equations involving two 
functions, F and G, whose coefficients are functions of r through A and B. The 
term in (A 5) involving % - Tl prevents a non-trivial solution for A(r )  and B(r),  
and similarity of the type (A 8) is impossible unless c = 0. In  that case, the 
solution is 

F(E) = tanht,  G(E) = sech2< 

and A(r )  = 

S(r)  = 

Q(r)  = 

where m, M and H are respectively the mass, momentum and angular momentum 
flux of the jet a t  r = 1. Both m and H are easily found from the boundary-layer 
solution since, as 3 6 notes, they are invariant through the turn at the inter- 
section of 9 and &. The value of M ,  however, depends on the details of this 
corner flow solution. 
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We note that, as r -+ m, 

This similar solution for a neutrally buoyant jet obviously satisfies condition 
(6.3) with equality. 

Appendix B 

and incompressible layer and also a thicker thermal layer; we write 
If cr = o( I), the boundary layer on 9, as indicated in 8 7, splits into a viscous 

r - I = (&/a) y1 

for the thermal-layer co-ordinate. If we also put u = sliZ and v = axv" in (2.1)) 
then the thermal-layer equations are 

pi? = 1. (B 4) 

Now, the order of magnitude of x is so far unspecified, but is clearly < 1. There 
are two cases to be considered as crJ0 with O(E)  fixed. 

Case (a) .  O(&) < cr = o( 1).  Here, x = .&/a3 from (B 3) so x = o(1). The limiting 
form of (B 1) is 

and IB 2) becomes 
a(piq/ay, = o 

Matching with the viscous layer gives p"G = - E,(O), SO with the match with the 
outer flow of 5 2 ,  we have 

and T = I (or Tux = 0 for the insulated sphere) on y1 = 0, 

P'-Tm(1+/3) as y l + m .  

The solution is given in $ 6  of I and in $ 7 of this paper. Matching with the outer 
solution in this case is much as in $ 4 and will not be repeated here; in any case, 
boundary conditions (4.3) and (4.4) on the outer flow are recovered. 
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Case (b) .  O ( d )  < CT = o(e8). Regardless of the order of magnitude of x, (B 3) 
shows T to be 0 independent, so 

and (B I )  integrates to _ _  I - c o s O ~ ~ " ~  
pv = - - for 0 < 0 < in. 

sine dy, 

and (B I )  integrates to _ _  I - c o s O ~ ~ " ~  
pv = - - for 0 < 0 < in. 

sine dy, 

The velocity components must match as y, -+ 0 with the viscous layer, as y1 3 co 
with the outer flow, and as 8 -+ in with the jet. Before matching as 8 -+ in, 
analysis of the region €4 x ( s s / c )  near the intersection of 9 and € must be done. 
Detailed analysis of that region shows that such a region is incapable of turning 
a &direction inflow 90" to be parallel with the fluid from the boundary-layer- 
eruption region (of size €4 x €4) beneath. Matching thus requires that fi6 = 0 on 
e = &... 

Therefore, from (B 7),  
d(p",i3/dY, = 0, (B 8) 

the solution of which is p"G = constant. This solution cannot be matched point- 
wise with the viscous layer underneath. This matter is discussed in some detail 
in I, and the conclusion there is that 

p"G = -Io'" EJ8)  sin 8d8. 

The solution of (B 6) is then identical with solutions of (B 5) with E,(@ 
replaced by 

s,"" E,,,(O) sin 8 d8. 

We notice then that, on matching with the outer expansion, 

u2 = -T,(I+~~~'=E,(l i)sinDdB 0 on 9'. 

The replacement of the pointwise matching to the viscous layer with the in- 
tegrated form (B 9) is not approximate but exact; in I it is shown that there is 
an intermediate layer between the viscous and thermal layers that is inviscid 
and rotational, and which rearranges the mass inflow through the thermal layer 
to that required by the boundary-layer entrainment. (It turns out that this 
layer has a width of (E/cT)* as shown in $ 7  of I.) 

Noting the nature of the matching from (44, it is appropriate to choose 
xc = (B/cT)*,  or x = (e/e4)* = o( I )  for c > O(d) .  Correcting 5? and 4 in (B 1)-(B 4) 
by terms of order x, and denoting such terms by a prime, we have from (B 3) 

ap'ias = o 
and thus (B 2) becomes 

which shows that aur/ae = 0. 
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Careful matching of precisely the same form as in 5 4 (with the outer expansion) 
gives 

l a  
lim [u’/yl] = - - - (vl sin 0) 

ul+m sin 0 80 

Equations (B 11) and (B 12) require 

which cannot be true, in general, since the inviscid equations (2.7) are solved 
with u1 = 0 on r = 1. The only solution that satisfies both (4.3) and (B 13) is 

I n  summary, then, as 5 5 0, the parameter range of case (a)  is encountered f i s t ;  
though the boundary-layer structure is somewhat altered, the outer flow is un- 
changed from the cr = O( 1)  case, and the matching is essentially the same. How- 
ever, once cr is sufficientlysmall to lie in the range covered by case (b ) ,  the boun- 
dary layer and outer expansions will not match unless there is no free convec- 
tion in the outer flow. The critical order of magnitude for cr is then d. If ale*  J 0 
as E J 0, there is no free convection; if cr/d co as e 1 0, the leading-order outer 
flow is free convection. 

u, = 0. 
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